1112.0189 (Eric Bertin)
Eric Bertin
We propose a simple phenomenological model exhibiting on-off intermittency over an extended range of control parameter. We find that the distribution of the 'off' periods has as a power-law tail with an exponent varying continuously between -1 and -2, at odds with standard on-off intermittency which occurs at a specific value of the control parameter, and leads to the exponent -3/2. This non-trivial behavior results from the competition between a strong slowing down of the dynamics at small values of the observable, and a systematic drift toward large values.
View original:
http://arxiv.org/abs/1112.0189
No comments:
Post a Comment