Thursday, April 26, 2012

1204.5559 (Vlatko Vedral)

Using Temporal Entanglement to Perform Thermodynamical Work    [PDF]

Vlatko Vedral
Here we investigate the impact of temporal entanglement on a system's ability to perform thermodynamical work. We show that while the quantum version of the Jarzynski equality remains satisfied even in the presence of temporal entanglement, the individual thermodynamical work moments in the expansion of the free energy are, in fact, sensitive to the genuine quantum correlations. Therefore, while individual moments of the amount of thermodynamical work can be larger (or smaller) quantumly than classically, when they are all combined together into the (exponential of) free energy, the total effect vanishes to leave the Jarzynski equality intact. Whether this is a fortuitous coincidence remains to be seen, but it certainly goes towards explaining why the laws of thermodynamics happen to be so robust as to be independent of the underlying micro-physics. We discuss the relationship between this result and thermodynamical witnesses of spatial entanglement as well as explore the subtle connection with the "quantum arrow of time".
View original: http://arxiv.org/abs/1204.5559

No comments:

Post a Comment