Tim Gould, John F. Dobson
By considering the physics of non-interacting ensembles we better generalise the notion of `exact exchange' (EXX) to systems with fractional occupations in the frontier orbitals (called LEXX), in part by exploiting ambiguities in the definitions of `correlation', `exchange' and `Hartree' physics in ensemble systems. The LEXX is employed in an optimised effective potential (OEP) approach (OLEXX) to approximate groundstate energies, where it is bounded by the `ensemble EXX' (EEXX) energy and standard fractional OEXX energy via $E^{\EEXX}\leq E^{\OLEXX} \leq E^{\OEXX}$. Analysis of the OLEXX explains the success of standard OEP methods for diatoms at large spacing, and why they can fail when both spins are allowed to be non-integer. The OLEXX is demonstrated on H, Li and Na with fractional electron number with improvements over OEXX for all cases.
View original:
http://arxiv.org/abs/1206.6158
No comments:
Post a Comment