Tuesday, September 4, 2012

1112.5491 (Wm. G. Hoover et al.)

Time's Arrow for Shockwaves ; Bit-Reversible Lyapunov and "Covariant"
Vectors ; Symmetry Breaking
   [PDF]

Wm. G. Hoover, Carol G. Hoover
Strong shockwaves generate entropy quickly and locally. The Newton-Hamilton equations of motion, which underly the dynamics, are perfectly time-reversible. How do they generate the irreversible shock entropy? What are the symptoms of this irreversibility? We investigate these questions using Levesque and Verlet's bit-reversible algorithm. In this way we can generate an entirely imaginary past consistent with the irreversibility observed in the present. We use Runge-Kutta integration to analyze the local Lyapunov instability of the forward and backward processes so as to identify those particles most intimately connected with the irreversibility described by the Second Law of Thermodynamics. Despite the perfect time symmetry of the particle trajectories, the fully-converged vectors associated with the largest Lyapunov exponents, forward and backward in time, are qualitatively different. The vectors display a time-symmetry breaking equivalent to Time's Arrow. That is, in Newtonian shockwaves the largest Lyapunov exponents, forward and backward in time, do not display covariant behavior.
View original: http://arxiv.org/abs/1112.5491

No comments:

Post a Comment