Laura Foini, Demian Levis, Marco Tarzia, Leticia F. Cugliandolo
We present a thorough study of the static properties of 2D models of spin-ice type on the square lattice or, in other words, the sixteen-vertex model. We use extensive Monte Carlo simulations to determine the phase diagram and critical properties of the finite dimensional system. We put forward a suitable mean-field approximation, by defining the model on carefully chosen trees. We employ the cavity (Bethe-Peierls) method to derive self-consistent equations, the fixed points of which yield the equilibrium properties of the model on the tree-like graph. We compare mean-field and finite dimensional results. We discuss our findings in the context of experiments in artificial two dimensional spin ice.
View original:
http://arxiv.org/abs/1210.8361
No comments:
Post a Comment