Steven J. Court, Richard A. Blythe, Rosalind J. Allen
We present a model for host-parasite dynamics which incorporates both vertical and horizontal transmission as well as spatial structure. Our model consists of stacked contact processes (CP), where the dynamics of the host is a simple CP on a lattice while the dynamics of the parasite is a secondary CP which sits on top of the host-occupied sites. In the simplest case, where infection does not incur any cost, we uncover a novel effect: a nonmonotonic dependence of parasite prevalence on host turnover. Inspired by natural examples of hyperparasitism, we extend our model to multiple levels of parasites and identify a transition between the maintenance of a finite and infinite number of levels, which we conjecture is connected to a roughening transition in models of surface-growth.
View original:
http://arxiv.org/abs/1212.1673
No comments:
Post a Comment