Andrea Pelissetto, Ettore Vicari
We investigate the general features of the renormalization-group flow at the Berezinskii-Kosterlitz-Thouless (BKT) transition, providing a thorough quantitative description of the asymptotc critical behavior, including the multiplicative and subleading logarithmic corrections. For this purpose, we consider the RG flow of the sine-Gordon model around the renormalizable point which describes the BKT transition. We reduce the corresponding beta-functions to a universal canonical form, valid to all perturbative orders. Then, we determine the asymptotic solutions of the RG equations in various critical regimes: the infinite-volume critical behavior in the disordered phase, the finite-size scaling limit for homogeneous systems of finite size, and the trap-size scaling limit occurring in 2D bosonic particle systems trapped by an external space-dependent potential.
View original:
http://arxiv.org/abs/1212.2322
No comments:
Post a Comment