E. Panagakou, G. C. Boulougouris, A. Provata
The dynamics of complex reactive schemes is known to deviate from the Mean Field (MF) theory when restricted on low dimensional spatial supports. This failure has been attributed to the limited number of species-neighbours which are available for interactions. In the current study, we introduce effective reactive parameters, which depend on the type of the spatial support and which allow for an effective MF description. As working example the Lattice Limit Cycle dynamics is used, restricted on a 2D square lattice with nearest neighbour interactions. We show that the MF steady state results are recovered when the kinetic rates are replaced with their effective values. The same conclusion holds when reactive stochastic rewiring is introduced in the system via long distance reactive coupling. Instead, when the stochastic coupling becomes diffusive the effective parameters no longer predict the steady state. This is attributed to the diffusion process which is an additional factor introduced into the dynamics and is not accounted for, in the kinetic MF scheme.
View original:
http://arxiv.org/abs/1302.2418
No comments:
Post a Comment