Hiroshi Fujisaki, Motoyuki Shiga, Kei Moritsugu, Akinori Kidera
We propose a novel path sampling method based on the Onsager-Machlup (OM) action by generalizing the multiscale enhanced sampling (MSES) technique suggested by Moritsugu and coworkers (J. Chem. Phys. 133, 224105 (2010)). The basic idea of this method is that the system we want to study (for example, some molecular system described by molecular mechanics) is coupled to a coarse-grained (CG) system, which can move more quickly and computed more efficiently than the original system. We simulate this combined system (original + CG system) using (underdamped) Langevin dynamics where different heat baths are coupled to the two systems. When the coupling is strong enough, the original system is guided by the CG system, and able to sample the configuration and path space more efficiency. We need to correct the bias caused by the coupling, however, by employing the Hamiltonian replica exchange where we prepare many path replica with different coupling strengths. As a result, an unbiased path ensemble for the original system can be found in the weakest coupling path ensemble. This strategy is easily implemented because a weight for a path calculated by the OM action is formally the same as the Boltzmann weight if we properly define the path "Hamiltonian". We apply this method to a model polymer with Asakura-Oosawa interaction, and compare the results with the conventional transition path sampling method.
View original:
http://arxiv.org/abs/1304.7342
No comments:
Post a Comment