Wednesday, May 1, 2013

1304.7985 (John Cardy)

Some Results on Mutual Information of Disjoint Regions in Higher
Dimensions
   [PDF]

John Cardy
We consider the mutual Renyi information I^n(A,B)=S^n_A+S^n_B-S^n_{AUB} of disjoint compact spatial regions A and B in the ground state of a d+1-dimensional conformal field theory (CFT), in the limit when the separation r between A and B is much greater than their sizes R_{A,B}. We show that in general I^n(A,B)\sim C^n_AC^n_B(R_AR_B/r^2)^{2x}, where x is the smallest scaling dimension of the theory, and the constants C^n_{A,B} depend only on the shape of the regions and universal data of the CFT. For a free massless scalar field, where 2x=d-1, we show that C^2_AR_A^{d-1} is proportional to the capacitance of a thin conducting slab in the shape of A in d+1-dimensional electrostatics, and give explicit formulae for this when A is the interior of a sphere S^{d-1} or an ellipsoid. For spherical regions in d=2 and 3 we obtain explicit results for C^n for all n and hence for the leading term in the mutual information by taking n->1.
View original: http://arxiv.org/abs/1304.7985

No comments:

Post a Comment