J. Olejarz, P. L. Krapivsky, S. Redner
We study the fate of the 2d kinetic q-state Potts model after a sudden quench to zero temperature. Both ground states and complicated static states are reached with non-zero probabilities. These outcomes resemble those found in the quench of the 2d Ising model; however, the variety of static states in the q-state Potts model (with q>=3) is much richer than in the Ising model, where static states are either ground or stripe states. Another possibility is that the system gets trapped on a set of equal-energy blinker states where a subset of spins can flip ad infinitum; these states are similar to those found in the quench of the 3d Ising model. The evolution towards the final energy is also unusual---at long times, sudden and massive energy drops may occur that are accompanied by macroscopic reordering of the domain structure. This indeterminacy in the zero-temperature quench of the kinetic Potts model is at odds with basic predictions from the theory of phase-ordering kinetics. We also propose a continuum description of coarsening with more than two equivalent ground states. The resulting time-dependent Ginzburg-Landau equations reproduce the complex cluster patterns that arise in the quench of the kinetic Potts model.
View original:
http://arxiv.org/abs/1305.1038
No comments:
Post a Comment