Seyit Deniz Han, Ekrem Aydiner
We numerically investigate thermal entanglement of the spins (1/2,1) and (1/2,1/2) in the three-mixed (1/2,1,1/2) anisotropic Heisenberg XXZ spin system on a simple triangular cell under an inhomogeneous magnetic field. We show that the external magnetic field induces strong plateau formation in pairwise thermal entanglement for fixed parameters of Hamiltonian in the case of the ferromagnetic and anti-ferromagnetic interactions. We also observe an unexpected critical point at finite temperature in the thermal entanglement of the spins (1/2,1) for antiferromagnetic case while the entanglement of the spins (1/2,1) for ferromagnetic case and the entanglement of the spins (1/2,1/2) for both ferromagnetic and antiferromagnetic cases almost decays exponentially to zero with increasing temperature. We conclude that this critical point in entanglement of the spins (1/2,1) for antiferromagnetic case indicates the presence of the quantum phase transition at finite temperature.
View original:
http://arxiv.org/abs/1305.6230
No comments:
Post a Comment