Osnat Mokryn, Marcel Blattner, Yuval Shavitt
Modeling complex networks has been the focus of much research for over a decade. Preferential attachment (PA) is considered a common explanation to the self organization of evolving networks, suggesting that new nodes prefer to attach to more popular nodes. The PA model results in broad degree distributions, found in many networks, but cannot explain other common properties such as: The growth of nodes arriving late and Clustering (community structure). Here we show that when the tendency of networks to adhere to trends is incorporated into the PA model, it can produce networks with such properties. Namely, in trending networks, newly arriving nodes may become central at random, forming new clusters. In particular, we show that when the network is young it is more susceptible to trends, but even older networks may have trendy new nodes that become central in their structure. Alternatively, networks can be seen as composed of two parts: static, governed by a power law degree distribution, and a dynamic part governed by trends, as we show on Wiki pages. Our results also show that the arrival of trending new nodes not only creates new clusters, but also has an effect on the relative importance and centrality of all other nodes in the network. This can explain a variety of real world networks in economics, social and online networks, and cultural networks. Products popularity, formed by the network of people's opinions, exhibit these properties. Some lines of products are increasingly susceptible to trends and hence to shifts in popularity, while others are less trendy and hence more stable. We believe that our findings have a big impact on our understanding of real networks.
View original:
http://arxiv.org/abs/1306.0808
No comments:
Post a Comment