J. Spiechowicz, J. Luczka, P. Hanggi
We research the transport properties of inertial Brownian particles which move in a symmetric periodic potential and are subjected to both a symmetric, unbiased time-periodic external force and biased Poissonian white shot noise (of non-zero average F) being composed of a random sequence of delta-shaped pulses with random amplitudes. Upon varying the parameters of white shot-noise one conveniently can manipulate the transport direction and the overall nonlinear response behavior. Within tailored parameter regimes, we find that the response is opposite to the applied average bias F of such white shot noise. This very transport characteristics thus mimics a nonlinear Absolute Negative Mobility (ANM) regime. Moreover, such white shot noise driven ANM is robust with respect to statistics of the shot noise spikes. Our findings can be checked and corroborated experimentally by use of a setup that consists of a single resistively and capacitively shunted Josephson junction device.
View original:
http://arxiv.org/abs/1211.5971
No comments:
Post a Comment