Yaghoob Naimi, Frinaz Roshani
By considering the master equation of the totally asymmetric exclusion process on a one-dimensional lattice and using two types of boundary conditions (i.e. interactions), two new families of the multi-species reaction-diffusion processes, with particle-dependent hopping rates, are investigated. In these models (i.e. reaction-diffusion and drop-push systems), we have the case of distinct particles where each particle $A_\alpha$ has its own intrinsic hopping rate $v_{\alpha}$. They also contain the parameters that control the annihilation-diffusion rates (including pair-annihilation and coagulation to the right and left). We obtain two distinct new models. It is shown that these models are exactly solvable in the sense of the Bethe anstaz. The two-particle conditional probabilities and the large-time behavior of such systems are also calculated.
View original:
http://arxiv.org/abs/1301.2792
No comments:
Post a Comment